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Abstract
A pre-martensitic elastic anomaly inside the stability field of the austenite phase is predicted.
While relaxation patterns near surfaces and interfaces are relatively insensitive to changes of
pressure, an anomaly occurs as a precursor to the ferroelastic transition. The exponential
relaxation pattern maintains its characteristic length but changes amplitude, like in the elastic
softening of bulk materials. This effect is not related to the movement of interfaces but
represents an intrinsic feature of the surface and interface layers. This effect is expected to be
observable in ceramics consisting of nanomaterials with ‘soft’ inter-granular interfaces. The
general theory and an exactly solvable model are presented and analysed numerically.

1. Introduction

An elastic instability is predicted as a precursor to a martensitic
or ferroelastic phase transition. It relates to interfacial
softening in the paraelastic phase and is best visible in
materials where the volume of the interfaces is optimized,
such as in nanomaterials. The effect is not related to the
movement of domain walls as expected in the ferroelastic or
martensitic phase but represents an intrinsic feature of the
surface relaxation. The effect is similar to that of the softening
of acoustic phonons (Carpenter and Salje 1998) while the
response is now static and localized next to surfaces.

The existence of soft interface layers has often been
postulated with consequences for enhanced diffusivity and
structural relaxations (Green and Zerna 1954, Page et al 2004,
Sennour et al 2008, Divinski and Herzig 2008, Aird and
Salje 1998, 2000, Kuo 2008, Benveniste and Miloh 2007,
Baumberger and Caroli 2006, Shenoy and Sharma 2003, Lee
et al 2006, 2003a, 2003b, 1999, Salje et al 2005). Interfaces
in super lattice structures are equally found to enhance,
say, ferroelectricity related to interfacial relaxations (Shah
et al 2008) while the strong temperature dependence of the
wall thickness (Chrosch and Salje 1999) shows the intrinsic
thermodynamic instability of wall profiles and may suggest
that such features are also strongly pressure dependent. The
elastic response of relaxational pattern is equally important
for the propagation of seismic waves (Romanowicz and Durek
2000, Andrews et al 2006, Faul and Jackson 2007) while is

it unlikely that any such elastic softening has intrinsic origins
besides in the vicinity of ferroelastic instabilities (Salje 2008).

It appears that the experimental evidence for intrinsic
softening is relatively poor with most cases related to
interfacial slip rather than elastic softening of the interface
itself (Jackson et al 2000). It has been argued recently that
if interfaces are not wetted (Faul and Jackson 2007) or related
to movement of either the interface itself or atomic diffusion
which would lead to such movements that interfaces contribute
very little to the supposed softening of multigrain materials
(Salje 2008). In particular the Hashin–Shtrikman limit of such
materials including interfacial energies can lead to hardening
rather than softening of nanomaterials (Salje 2007, Li et al
2005) which is very different from the case of voids which
leads to a significant reduction of the elastic response of porous
material (Milton 2002). Another example concerns interfaces
in radiation damaged material which are denser than the bulk
and the encapsulated amorphous regions and hence contribute
greatly to the hardening of the material as compared with
simple Voight or Reuss interpolations (Salje 2007, Trachenko
2007). In the small grain Pertsev–Salje limit the elastic
susceptibility of quartz, for example, is expected to display
an almost second order phase transition at the alpha–beta
transition point (Pertsev and Salje 2000). While this effect was
observed by Rios et al (2001), more detailed measurements of
the elastic behaviour by McKnight et al (2008) seem to be at
variance with this result and display a classic behaviour albeit
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with base line changes which seem to indicate grain boundary
softening.

The fundamental question is whether elastic anomalies
related to surfaces and twin boundaries (but not chemical
interfaces such as seen in case of radiation damaged domains
or glassy interfaces) can change the elastic moduli. More
precisely, the question is whether a material, which relaxes
structurally but remains topologically and chemically intact
at the interface or surface, will show elastic softening related
to this structural relaxation. Evidence for the equivalent
effect in ferroelectric materials and vortex lattices was recently
provided in the low temperature phase numerically by Lahoche
et al (2007) and experimentally for the switching behaviour of
vortex ferroelectric domains by Gruverman et al (2008). In
either case the role of the surface relaxation is clearly seen for
the arrangement of the polarization vectors. In the ferroelastic
case, the relaxation of the surface layers of apatite showed
that the relaxation extended for conditions unrelated to phase
transitions  to some five atomic layers  (Lee et al 2000,  Speer
and Salje 1986).

In this paper the structural relaxation near surfaces
and their elastic response is examined in the multilayer
approach first introduced by Houchmanzadeh et al (1992).
Interfacial layers can be understood in exactly the same manner
provided that the model parameters are suitably adapted
to this physical situation. This approach is a mechanical
minimization problem and does not take into account higher
order effects as one would encounter in Landau Ginzburg
theory. Technically speaking we consider only the quadratic
terms in any thermodynamic potential which is sufficient for
states in the paraelastic phase. ‘Divergence’ will be seen when
the transition points are approached. These divergences are
physical reality although their amplitudes will be limited in
higher order theory. Nevertheless, the physical character of the
divergence remains the same as will be argued below. It will
be shown that the decay function of the relaxation can change
slightly (interfaces can become sharper or more diffuse) while
the elastic response can be related to the bulk elastic constants
via a suitable Gruneisen parameter. Intrinsic elastic softening
occurs as a precursor to the ferroelastic or martensitic phase
transition.

Finally, the relaxation is reduced in this paper to the
simplest physical model, namely a chain of interacting springs,
with no further internal degrees of freedom. In reality,
materials with several atoms per unit cell will generally contain
such additional degrees of freedom (Goncalves-Ferreira et al
2008, Salje 1985, Schmahl et al 1989) so that surface
relaxations also become the obvious locus for secondary order
parameters such as polarization, magnetic moments etc even
though the relaxation is elastic in origin.

2. The layer model with second nearest neighbour
interactions

The relaxation of any interface or surface layer can be
written in a multilayer Hamiltonian in which the nth layer
coordinate depends on the layers above and below the layer.
In this paper the interactions are restricted to first and second

nearest neighbour interactions, the extension to higher order
interactions was treated for the relaxation by Houchmanzadeh
et al (1992) and can easily be adapted to the approach taking in
this paper. The layer distance is Zn+1 − Zn , the Hamiltonian is

H = �V (Zn+1 − Zn) + V (Zn+2 − Zn) (1)

where V denotes an arbitrary interatomic or inter layer
potential. The equilibrium condition for the stress-free
scenario is

V ′(b) + 2V ′(2b) = 0 (2)

where b is the equilibrium lattice parameter for the interlayer
distance. V ′(b) and V ′(2b) are the first spatial derivatives of
the potential at the distance b and 2b, respectively.

The lattice parameter b changes to b+δb when the stress σ

is applied. Developing V into first order derivatives in b leads
to

V ′(b) + V ′′(b)δb + 2V ′(2b) + 4V ′′(2b)δb = δσ. (3)

The equilibrium condition for the stress-free case leads to
δσ = (V ′′(b) + 4V ′′(2b))δb and the effective elastic modulus
becomes

C = (V ′′(b) + 4V ′′(2b))b = (φ1 + 4φ2)b. (4)

The symbol φ is used for the classic force constants with
the index 1 for nearest layer interactions and 2 for second
nearest layer interactions. Elastic stability is obtained for
C > 0 or (φ1 + 4φ2) > 0 in accordance with the criterion
for the stability of zone centre phonons. We now consider
the relaxation of the layers under stress around the new lattice
parameter b∗ = b + δb. The relaxational parameter is εn with
Zn+1 − Zn = b∗ + εn with εn = 0 in the bulk and finite values
only near the surface or interface.

The equilibrium condition is δH/δεn = 0 with

δH/δε0 = V ′(2b∗) + (φ1 + φ2)ε0 + φ2ε1 = 0 (5)

for the first layer and

δH/δεn = φ2εn−1 + (φ1 + 2φ2)εn + φ2εn+1 = 0 (6)

for the nth layer. For interfaces the parameter V ′(2b∗) defines
the relaxation amplitude and, when appropriate, the boundary
conditions. In case of surface relaxations with the vacuum as
boundary condition outside the solid this parameter is simply
the derivative of the interaction potential as taken at the second
nearest neighbour position. This recursive expression has
solutions which decay exponentially in the bulk of the material
with

εn = λnε0 (7)

where the characteristic length (b ln |λ|) is determined by the
ratio of the force constants φi

λ = −(1 + φ1/2φ2) ± ((1 + φ1/2φ2)
2 − 1)1/2. (8)

The solution is a decaying wave with |λ| < 1. Its value
depends only on the ratio φ1/2φ2 and hence the pressure effect
can be written as

φ1/2φ2(σ ) = φ1/2φ2(σ = 0)

+ (φ2δφ1/δσ − φ1δφ2/δσ)σ/2φ2
2 . (9)
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The frequency of the zone boundary phonon in the relaxed
system is given by ω2 = φ1 > 0 which leads to the relation

δφ1/δσ = 2ωδω/δσ = 2γ1φ1(δV/δσ)/V

= 2γ1φ1/b(φ1 + 4φ2) = 2γ1φ1/C. (10)

The second equality represents the mode Gruneisen
relationship and the last normalizes the stress by the elastic
modulus. The second characteristic frequency relates to the
zone boundary mode ω2 = φ1 + 4φ2 > 0. Using the same
arguments as above one can show that

δφ2/δσ = (1/2(γ2 − γ1)φ1 + 2γ2φ2)/C. (11)

Two lattice instabilities occur for φ1 = 0 (anti-
ferroelastic) and φ1 = −4φ2 (ferroelastic). At the instability
points the characteristic length b ln |λ| vanishes which leads
to a uniform sample. The thickness of the surface layer then
scales as b/ ln |λ| i.e. the surface layers spreads over the entire
sample. The parameter λ becomes 1 for the ferroelastic phase
transition and −1 for the anti-ferroelastic phase transition. The
pressure derivatives disappear for φ1 = 0 because both terms
in equation (9) disappear. In case of φ1 = −4φ2 it is easy to
verify that the total stress derivative also disappears because
the two terms in equation (9) cancel. This means that the
characteristic length of the surface or interface relaxation does
not change under stress at either transition conditions.

For conditions for very narrow interfaces far away from
the transition points we have φ1 � φ2. Under these conditions
the total derivative becomes

(φ2δφ1/δσ − φ1δφ2/δσ) = 1/2(γ1 − γ2)φ
2
1/C (12)

where C becomes C = φ1b so that equation (12) becomes
simply 1/2(γ1 − γ2)φ1/b

The variation of λ is then given by

δλ = (γ2 − γ1)/4λ2(δσ/C) (13)

with λ = φ2/φ1 in this limit. For long ranging relaxations,
the variation is λ is small but for very short length scales the
variation in λ can be significant.

3. Amplitude variations

We now turn to the pressure dependence of the amplitude of the
structural relaxation. The relaxation amplitude is determined
by εo in equation (5) with

εo = −V ′(2b)/[φ2(2 + φ1φ2 − 1 + λ)]
= −V ′(2b)/(φ1 + φ2 + λφ2) (14)

V ′(2b) represents an interface or surface boundary condition
which, say, for surface layers can include the role of
absorbents, local fields etc. In the limit of φ1 � φ2 and hence
small values of λ we find the trivial solution

εo = −V ′(2b)/φ1 (15)

which indicates that the first layer relaxes but that all further
layers assume essentially the unrelaxed interatomic distances.
The anti-ferroelastic phase transition occurs at φ1 = 0 and

λ = −1 so that in this case the first layer relaxation diverges
because the unit cell doubles perpendicular to the surface
or interface and the original interlayer distance is no longer
defined in this model.

A ferroelastic transition occurs at φ1 = −4φ2 and λ = 1

εo = V ′(2b)/2φ2 = −2V ′(2b)/φ1. (16)

If V ′ is given as a boundary condition the amplitude εo

remains finite. We will show later that V ′ can depend explicitly
on the second derivatives which will lead to a divergence
of εo. We now focus, as an example, on the case that
the relaxation is spread over a relatively small distance and
investigate equation (15). The stress dependence of εo is

δεo/δσ = −(φ1δV ′(2b)/δσ − V ′(2b)δφ1/δσ)/φ2
1

= − (φ1δV ′(2b)/δbδb/δσ − V ′(2b)δφ1/δσ)/φ2
1 (17)

where the second partial derivative is given by equation (10)
while δb/δσ is given by the elastic constants of the bulk in
equation (4).

The elastic constant C∗ for the first layer δεo/εo/δσ is in
this approximation

C∗ = C/2γ1. (18)

Elastic softening occurs in the interfacial or surface layer
when γ1 > 0.5. For weakly anharmonic materials we find that
the Gruneisen parameter is in the order between 0.1 and 1 so
that the elastic response of the surface layer is in the same order
of magnitude as the elastic modulus of the bulk.

4. A toy model: exact solutions and numerical results

We can now define a fully solvable model with interactions
perpendicular to the surface. In figure 1 such a model with two
generalized springs between nearest and next nearest layers is
shown. The Hamiltonian is now

H = �(φ1/2(b+εi −a1)
2+φ2/2(2b+εi +εi+1−a2)

2). (19)

The surface condition is the vacuum with no additional
boundary conditions attached. The generalized spring
constants can assume positive and negative values and are
defined as φ1 and φ2. The equilibrium condition for the lattice
parameter b follows from equation (2)

b = (φ1a1 + 2φ2a2)/(φ1 + 4φ2) (20)

the denominator is C and the length parameter λ depends only
on the ratio of the force constants f = φ1/φ2 as

λ = ±1/2( f 2 + 4 f )1/2 − 1/2 f − 1. (21)

The sign is to be taken so that λ � 1. The amplitude
function is

εo = 2(2a1 − a2) f/[( f + 4)( f 2 + 4 f )1/2 + 4 f + f 2]. (22)

The misfit between the nearest layer lattice parameter
a1 and the next nearest layer lattice parameter a2 is given
by the pre-factor 2a1 − a2. If both springs are individually
in their energy minimum there is no lattice relaxation and
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Figure 1. The two-spring model with free surfaces. Nearest neighbour layers are connected by a spring with force constant φ1, the second
nearest neighbours are connected by springs with the force constant φ2. The equilibrium distances are a1 and a2, the misfit parameter is
2a1 − a2.

the amplitude becomes zero. The pressure dependence of
the characteristic length and the amplitude depends only on
the fraction f . Following the same arguments as above,
the anharmonicity is expressed in terms of the Gruneisen
parameters of the two characteristic modes at k1 = 0 and
k2 = π/b

δ f/δσ = ( f + f 2/4)(γ1 − γ2)/C. (23)

δ f/δσ plays the role of an ‘inverse elastic modulus of the
relaxation’ with positive and negative admissible values. It is
proportional to the difference of the Gruneisen parameters and
inversely proportional to the elastic modulus of the bulk. Note
that δ f/δσ = 0 at both transition points as discussed above.
External stress does not change f at these points. The stress
dependence of λ can now be evaluated via

δλ/δσ = [(1 + f/2)/( f 2 + 4 f )1/2 − 1/2]δ f/δσ (24)

and the amplitude function via

δεo/δσ = 2(2a1 − a2)[(1 + 4/ f )(2 f + 4)/( f 2 + 4 f )1/2

+ 4/ f 2( f 2 + 4 f )1/2 + f ]/[(1 + 4/ f )( f 2 + 4 f )1/2

+ 4 + f ]2δ f/δσ (25)

where each root-function has to be taken as its negative for
f < −4. Numerical calculations were undertaken for the
parameters λ( f, σ ) and εo ( f, σ ) as functions of the ratio
between the force constants f and the external pressure σ .
The pressure is measured in units of C in order to allow a
comparison with the elastic behaviour of the bulk. In the
numerical analysis the difference of the Gruneisen parameters
is put to 0.1 and the misfit strain to 5%. The calculations
were done for the stability range f > 0 and f < −4.
The results in figures 2–4 show that no singularities exist at
the transition point f = 0. A singularity occurs near the
ferroelastic transition point f = −4 for uniform stress fields.
The details of the singularity are best seen in the derivative
δA/δ f in figure 4(c). This effect is similar to the pre-wetting or
pre-martensitic phenomenon as discussed by Houchmanzadeh
et al (1992). At conditions far away from the instability
points (0,−4) the absolute amplitudes and their derivatives are
extremely small and surface layers are very thin with small
values of λ. The total effect on the relaxation pattern is small
under these conditions. The results in figure 4 show that the
variation δλ is small for all parameters of f .

5. Discussion

In a soft mode picture the square of the soft mode frequency
is proportional to the force constants in the model. As
an example, we can take φ1 as related to the soft mode
frequency and hence f = f0(T − Tc)/Tc in a high
temperature approximation. Similarly, the frequency becomes
explicitly pressure dependent so that we can take f as the
thermodynamic control parameter. Approaching the phase
transition point in a second order transition would generate
the structural bulk instabilities. In case of proper ferroelastic
transitions, the elastic constant becomes the order parameter
susceptibility with a lowering of C in the paraelastic phase
(Salje 1993). In case of the more common case of an improper
ferroelastic transitions, no significant softening of C occurs in
the paraelastic phase besides dynamical effects described by
Carpenter and Salje (1998). All precursor effects described so
far are uniform throughout the sample. The new feature, as
described in this paper, consists of a heterogeneous precursor.
The ferroelastic phase (martensite) nucleates at the surface
of the sample as a relaxational deformation. The precursor
regions decay exponentially towards the inside of the sample.
The elastic response of the relaxation region is different from
the bulk values but will be difficult to observe in a macroscopic
sample unless local indentation or AFM methods are applied
(Zhang et al 2006).

Two changes occur when the transition point is
approached. First, the precursor regions expand with a
length scale of 1/ ln(|λ|) thus invading the bulk. The value
of λ approaches 1 and this correlation length diverges at
the transition point. The second change is the amplitude
of the relaxation which increases at the transition point.
Accordingly, the surface elasticity will change as seen in
figure 2(b). Experimentally, a very narrow precursor interval
with diminished elastic moduli and a two-phase diffraction
signal is expected. In figure 2(c) a log–log plot of the
total precursor amplitude (local amplitude times the effective
volume of the precursor region) versus log(T − Tc) =
log( f ) shows a perfect power law behaviour with an effective
exponent of 1.5. This has nothing to do with critical exponents
which relate to the bulk parameters but relate exclusively to
the precursor effect described in this paper. Note that in this
paper we have not considered the anharmonic local potentials

4
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(a) (b)

(c)

Figure 2. (a) Pressure dependence of the relative change of the relaxation amplitude in the ‘anti-ferroelastic’ regime (λ > 0). No singularity
occurs for uniform stress fields. (b) Pressure dependence of the relative change of the relaxation amplitude in the ‘ferroelastic’ regime
(λ < 0). Note the singularity at the f = −4 transition point. (c) Log/log plot of the precursor amplitude multiplied by the characteristic
volume (log(εo/ ln λ) versus the ratio of the force constants). The latter stands for the temperature dependence within the P/T phase
diagram. The linear plot implies power law behaviour characteristic for criticality while the model is purely mechanical and contains no
critical fluctuations whatsoever. It demonstrates the dangers of ‘fitting’ precursor amplitudes to some power law and critical behaviour while
the temperature evolution is clearly purely classic in reality.

and hence the details of the transition near the transition point
are approximate. In fact, the treatment in this paper is purely
mechanical with thermodynamic features represented only by
the coupling of force constants and the soft mode via the
mode Gruneisen parameter. The treatment is, thus, entirely
within mean field theory, MFT, and has nothing to do with
the scaling approaches taken by Binder (1983), Kretchme and
Binder (1979), Binder and Landau (1976), Binder (1983) and,
recently, Vink et al (2005). The scaling behaviour in this
paper is a mechanical feature within MFT and could easily
be misunderstood by experimentalists when measuring the
relaxation volume in nanocrystals.

Finally, the two-phase behaviour should not be confused
with the appearance of a hysteresis in first order transitions.
The two-phase behaviour is an equilibrium feature and relates
to the surface regions which are an intrinsic feature of the
transition. They show no hysteresis behaviour.

In summary, while surface and interface layers show
no big changes of the elastic behaviour compared with the
bulk properties, and anomaly occurs when the ferroelastic
(martensitic) transition is approached inside the paraelastic
phase field. Firstly, the precursor regions near the grain
surfaces increase in volume and amplitude. Secondly, the
surface layers show an elastic softening or hardening. In

5
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Relaxation amplitude Relaxation amplitude

(a) (b)

Figure 3. (a) Relaxation amplitude in the ‘anti-ferroelastic’ regime. The misfit parameter 2a1 − a2 is set to 0.1, the lattice parameter is b = 1.
(b) Relaxation amplitude in the ‘ferroelastic’ regime. The amplitude disappears for sharp interfaces and boundary layers while a
pre-martensitic singularity occurs at the ferroelastic transition point f = −4. Conditions as in (a).

δ λ δ λ(a) (b)

Figure 4. (a) Stress induced change of the relaxational length scale λ in the ‘anti-ferroelastic’ regime. (b) Stress induced change of the
relaxational length scale λ in the ‘ferroelastic’ regime.

samples with large surface fractions, such as in nanoceramics,
this effect should be easily measurable.
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